
Ahmed et al. BMC Methods             (2024) 1:4  
https://doi.org/10.1186/s44330-024-00004-5

EDITORIAL

Artificial intelligence for omics data analysis
Zeeshan Ahmed1,2*†, Shibiao Wan3†, Fan Zhang4,5† and Wen Zhong6† 

Abstract 

Recent technological advancements have vastly improved access to high-throughput biological instrumentation, 
sparking an unparalleled surge in omics data generation. The implementation of artificial intelligence techniques 
is revolutionizing omics data interpretation. The BMC Methods Collection "Artificial intelligence for omics data analysis" 
will feature novel artificial intelligence approaches leveraging multi-omics data to accelerate discoveries in personal-
ized medicine, disease diagnostics, drug development, and biological pathway elucidation.

Main
In recent years, technological advancements have signifi-
cantly boosted the accessibility of high-throughput bio-
logical instrumentation for researchers. This surge has 
led to an unprecedented rate of biological data genera-
tion, marking the dawn of the big data era [1]. Driven by 
the aspiration for a comprehensive understanding of bio-
logical systems, researchers now routinely conduct omics 
studies, encompassing genomics, transcriptomics, epig-
enomics, proteomics, and metabolomics, which generate 
vast amounts of data that hold crucial information about 
biological processes and disease mechanisms. However, 
single omics data alone may sometimes struggle to fully 

elucidate the complexities of biological phenomena [2]. 
Therefore, integrating data from multiple omics sources 
can offer a more comprehensive understanding of bio-
logical systems by capturing interactions between differ-
ent molecular layers. As a result, multi-omics approaches 
are gaining popularity due to their potential to provide a 
more holistic view of biological mechanisms or diseases 
by extracting, analyzing, and interpreting hidden infor-
mation that single technologies cannot reveal [3].

Artificial intelligence approaches in omics analysis
Traditional statistical modeling has long been the default 
choice for analyzing and interpreting big data. However, 
in recent years, artificial intelligence (AI) technology has 
gained popularity across various fields [1]. This surge 
in popularity can be attributed to the evolution of data 
types from traditional structured data to non-structured, 
semi-structured, and heterogeneous architectures with 
diverse characteristics. Furthermore, the demand for 
novel insights into biological mechanisms has raised the 
standards and requirements for the depth and accuracy 
of omics analysis.

AI was formally defined at the Dartmouth conference 
in 1956 [4]. After that, it developed rapidly and it now 
encompasses a range of techniques, including machine 
learning (ML) and deep learning (DL), that enable com-
puters to learn from data and make predictions or deci-
sions. Specifically, ML focuses on developing algorithms 
and statistical models that enable computers to perform 
tasks without explicit programming. Algorithm selection 
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is therefore pivotal, and they can be categorized into 
supervised, semi-supervised, and unsupervised [5]. DL, 
a subset of ML, employs neural networks composed of 
hidden layers that perform various operations to uncover 
intricate representations of the data. This approach has 
significantly improved the performance of classifiers, sur-
passing that of traditional ML algorithms, particularly in 
scenarios involving large-scale datasets with high dimen-
sionality [5].

The implementation of AI techniques has certainly 
revolutionized the way researchers derive insights from 
omics data. For example, the recent developed genomic 
language model (gLM), trained on millions of metagen-
omic scaffolds to learn the latent functional and regula-
tory relationships between genes, has proven to be a 
potent and promising method to close the gap between 
genomic-context and gene sequence-structure–function 
[6]. In another recent study, MethylBoostER (Methyla-
tion and XGBoost for Evaluation of Renal tumors), a ML 
model based on the XGBoost (eXtreme Gradient Boost-
ing) library, has been effective in differentiating patho-
logical subtypes of renal tumors, using DNA methylation 
markers identified in large tissue datasets [7].

As previously mentioned, the interpretation of single 
omics data often falls short in explaining complex bio-
logical phenomena comprehensively, making it challeng-
ing to meet the growing research expectations. However, 
by integrating multiple omics datasets, researchers can 
gain a more comprehensive understanding of biologi-
cal systems. AI techniques have become instrumental 
in this regard, allowing researchers to manage the high 
dimensionality and heterogeneity of multi-omics data. 
This approach not only uncovers hidden patterns but also 
facilitates the prediction of biological outcomes, thereby 
accelerating biomedical research and paving the way 
for personalized medicine [8]. For example, the recently 
implemented Molecular Twin, a novel AI platform inte-
grating multi-omics data, has proven to be effective in 
predicting outcomes for pancreatic adenocarcinoma 
patients [9].

Challenges and perspectives
The accumulation of a large amount of biomedical data 
and the integration of multi-omics through AI will inevi-
tably bring huge benefits to research, eventually leading 
to personalized medicine. However, despite the progress 
made by AI in various biomedical realms, numerous 
challenges remain [1]. They include but are not limited to 
the management and integration of high volume and het-
erogeneous multi-omics data, the expertise required for 
implementing AI approaches and interpreting AI-driven 
insights, and the critical task of maintaining data quality 

and achieving reliable generalization. More details are 
provided below.

Heterogeneity, outliers and missing data imputation
Multi-omics data from different high-throughput sources 
are usually heterogeneous and noisy. Some omics are 
more prone to generate sparse data than others and some 
datasets lack a large number of values, which hinders the 
integration of multiple datasets [10, 11]. Data preprocess-
ing steps, such as normalization, batch correction, miss-
ing value imputation, and outliers detection are crucial 
for ensuring the quality and reliability of omics data anal-
ysis results [1].

Interpretability and explainability
AI models, particularly DL models, are often regarded 
as "black boxes" due to their complex architectures and 
lack of interpretability [1]. A transparent and explainable 
AI algorithm is essential to its final clinical translation 
and application. On March 15, 2024 the Food and Drug 
Administration (FDA) published the "Artificial Intelli-
gence and Medical Products: How CBER, CDER, CDRH, 
and OCP are Working Together," which represents the 
FDA’s coordinated approach to AI. This paper is intended 
to complement the "AI/ML Software as a Medical Device 
Action Plan" and represents a commitment between 
the FDA’s Center for Biologics Evaluation and Research 
(CBER), the Center for Drug Evaluation and Research 
(CDER), and the Center for Devices and Radiological 
Health (CDRH), and the Office of Combination Products 
(OCP), to drive alignment and share learnings applicable 
to AI in medical products more broadly (https:// www. 
fda. gov/ medic al- devic es/ softw are- medic al- device- samd/ 
artif icial- intel ligen ce- and- machi ne- learn ing- softw are- 
medic al- device).

Overfitting and generalization
Overfitting, where a model performs well on the train-
ing data but fails to generalize to new, unseen data, is a 
common challenge in AI-driven omics data analysis. 
Techniques such as cross-validation, regularization, and 
ensemble learning are used to mitigate the risk of over-
fitting and improve the generalization performance of AI 
models [5].

Curse of dimensionality
Most multi-omics datasets suffer from the classical ‘curse 
of dimensionality’ problem, i.e. having much fewer obser-
vation samples than multi-omics features [11].

Computational and storage cost
The use of AI for multi-omics analysis comes with com-
putational and data storage costs. Most algorithms 
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require high computation power and large volumes of 
storage capacity to save the logs, results, and analysis [1].

Addressing these issues necessitates Findable, Acces-
sible, Intelligent, and Reproducible (FAIR) solutions, 
designed for users with and without computational back-
ground [12]. These solutions should facilitate biomarker 
discovery and disease prediction with high precision 
by leveraging both existing and newly generated multi-
omics data alongside demographic and clinical informa-
tion, uncovering insights often overlooked by traditional 
statistical and bioinformatics methods. For example, the 
recent introduction of SLIDE (Significant Latent Factor 
Interaction Discovery and Exploration), an interpretable 
latent factor regression-based machine learning approach 
implemented for ubiquitous biological discovery from 
high-dimensional multi-omics datasets, overcame some 
of the previous challenges. While most current methods, 
such as black-box DL approaches or classification/regres-
sion techniques, focus primarily on prediction, prevent-
ing them from offering insights into actual mechanisms 
of complex molecular, cellular or organismal phenotype, 
SLIDE incorporated nonlinear relationships and came 
with rigorous guarantees regarding identifiability of the 
latent factors and corresponding inference [13].

Using AI to address research and clinical needs
However, a critical question remains: which AI approach 
or algorithm is most suitable to address a specific 
research question or clinical need? The choice of the 
appropriate AI approach profoundly influences outcome 
prediction accuracy, biomarker discovery, and stratifi-
cation of patient heterogeneity. By applying suitable AI 
techniques, avenues can be opened for broader biomedi-
cal research, ultimately leading to personalized interven-
tions and identification of novel treatment targets [3]. 
The widespread adoption of these advancements holds 
immense potential for enhancing public health initiatives 
worldwide.

Acknowledging the importance of this field, the BMC 
Methods Collection “Artificial intelligence for omics data 
analysis” (https:// www. biome dcent ral. com/ colle ctions/ 
aioda), focuses on publishing innovative AI approaches 
using multi-omics data to accelerate discoveries in areas 
like personalized medicine, disease diagnostics, drug 
development, and biological pathway elucidation. We 
invite researchers to submit their work in these areas, 
contributing to the advancement of AI-driven omics data 
analysis and its applications in various fields of biological 
and medical research.
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